当前位置:魔方格数学正方形,正..>如图,正方形ABCD的两条对角线交于点O.(1)若H为OC上一点,过A作B..
题文
如图,正方形ABCD的两条对角线交于点O.
(1)若H为OC上一点,过A作BH的垂线,垂足为E,AE与BO相交于点G.试探索OH与OG的数量关系,并证明;
(2)若点H在OC的延长线上,过A作BH的垂线,交HB的延长线于点E,直线AE与OB相交于点G.(1)中的结论还成立吗?若成立,给出证明;若不成立,请说明理由.

魔方格
亚洲 日韩 国产 有码 亚洲欧美中文日韩v在线 亚洲日韩有码无线免费 欧美日韩一级片
题型:解答题难度:中档来源:不详
答案
(1)OH=OG.
证明:∵四边形ABCD为正方形,
∴AO=B0,B0⊥AC(正方形两条对角线相等,互相垂直平分),
∴∠AOG=∠BOH=90°,(2分)
则∠OAG+∠OGA=90°,又AE⊥BH,
∴∠AEB=90°,则∠OBH+∠BGE=90°,
而∠OGA=∠BGE,
∴∠OAG=∠OBH,(4分)
∴△OAG≌△OBH(ASA),
则OH=OG;(6分)

魔方格

(2)OH=OG成立.(无此步不扣分)(7分)
证明:∵四边形ABCD为正方形,
∴AO=BO,BO⊥AC,
∴∠AOG=∠BOH=90°(8分)
则∠H+∠HBO=90°,又AE⊥BH,
∴∠GEB=90°,则∠G+∠GBE=90°,
又∠HBO=∠GBE,
∴∠H=∠G(9分)
∴△AOG≌△BOH.(AAS)
则OG=OH.(11分)
据魔方格专家权威分析,试题“如图,正方形ABCD的两条对角线交于点O.(1)若H为OC上一点,过A作B..”主要考查你对  正方形,正方形的性质,正方形的判定  等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问魔方格学习社区
正方形,正方形的性质,正方形的判定
考点名称:正方形,正方形的性质,正方形的判定
  • 正方形的定义:
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    特殊的长方形。
    四条边都相等且四个角都是直角的四边形叫做正方形。
    有一组邻边相等的矩形是正方形。
    有一个角为直角的菱形是正方形。
    对角线平分且相等,并且对角线互相垂直的四边形为正方形。
    对角线相等的菱形是正方形。
  • 正方形的性质:
    1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
    2、内角:四个角都是90°;
    3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
    4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
    5、正方形具有平行四边形、菱形、矩形的一切性质;
    6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
    正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
    7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
    正方形外接圆面积大约是正方形面积的157%。
    8、正方形是特殊的长方形。

  • 正方形的判定:
    判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
    1:对角线相等的菱形是正方形。
    2:有一个角为直角的菱形是正方形。
    3:对角线互相垂直的矩形是正方形。
    4:一组邻边相等的矩形是正方形。
    5:一组邻边相等且有一个角是直角的平行四边形是正方形。
    6:对角线互相垂直且相等的平行四边形是正方形。
    7:对角线相等且互相垂直平分的四边形是正方形。
    8:一组邻边相等,有三个角是直角的四边形是正方形。
    9:既是菱形又是矩形的四边形是正方形。

    有关计算公式:
    若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
    正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
    正方形周长计算公式: C=4a 。
    S正方形=。(正方形边长为a,对角线长为b)

以上内容为魔方格学习社区(www.oauet.cn)原创内容,未经允许不得转载!